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Abstract. Any change of state can be represented objectively and causally in the form of 
a transformation T :  W +  w = T (  W) = Z,E,WE:, where {E,} are operators of the object 
system itself, and define the cause of the evolution from the initial state W to the final 
state w. Three axiomatically simple criteria are proposed in order to define that class of 
transformations M ( A )  which accomplish the measurement ofagiven property A =I,, A,P,. 
This class turns out to hold an infinity of equivalent transformations, which all perform 
the same measurement, but employ distinct causes {E,}. One such transformation is the 
projection w = Z, P, WP, which is traditionally held to define the measurement of A. While 
our results are therefore consistent with standard theory, the wider class we consider 
includes transformations which accomplish the measurement by means of physical causes, 
such as rotations, translations, etc. A theorem is proved which shows the following. ( a )  
For every measurement TE M ( A )  the cause must be compatible with A, i.e. [A ,  E,] = O  
for all members of {E,}. This means that the operators of quantum theory define the very 
operations which cause the measurement of the physical properties they represent. ( b )  To 
achieve a measurement a certain design criterion must be satisfied by the cause {€,}. ( c )  
The measured statistic { w ~ }  always agrees with the standard probability prediction made 
within quantum theory on the basis of the initial object state W. If w = Z ,  w,P, is the 
result of a measurement of A,  and P ( n )  = Tr( WP,,) is the predicted probability that its 
value is A,,, then for every TE M ( A ) :  w, = P(n) for all n. This provides the empirical 
foundation for the quantal probability calculus, without resort to the traditional projection 
postulate. Our criteria which make this feasible rely exclusively on empirical principles 
based on classical l o g i o i n  an operational context. Several examples are investigated, 
including measurements performed by so-called operations. It is demonstrated that under 
certain circumstances an apparatus (not necessarily macroscopic) can both perform the 
measurement and record its outcome. 

1. Introduction 

The present work deals with so-called complete measurements and with the probabilis- 
tic/statistical interpretation of quantum theory. In a subsequent paper the theory will 
be generalised to incomplete measurements, whereby such concepts as indeterminacy 
and uncertainty can be rigorously investigated. A brief and informal account of some 
of these results has been given elsewhere (Larsen 1986b). Along with the formal 
structure we take care to supply remarks which aim to clarify the physical meaning 
of the theoretical concepts and of the results that are obtained. The main result is 
theorem 4.1, whose significance is explained in the remarks appended to it, and in 0 6. 
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2. Preamble 

Definition 2.1 (quantum principle). Let W be the Hilbert space associated with a physical 
system, referred to as the object system. The properties of the system are linear operators 
on W. Its state is a statistical operator W, i.e. a member of the set 

9’={WIW= W’, W>O,Tr(W)=l}.  

We base our discussion on the standard principles of quantum theory and all results 
will be entirely consistent with it. Two alternative orthonormal bases in W are denoted 
{Icy) 1 la) E W, cy E I,} and {In) 1 In) E W, n E I,}. The ‘greek index set’ 0, and the ‘latin index 
set’ 0, have the same cardinality (and are countable if and only if W is separable). The 
trace can be calculated in any basis; for instance 

Tr(W)= (cyIWlcy)= ( n l W l n ) = l  
0€Og nEOl 

with the usual notation for the scalar product in W ,  etc. 
The nature of the operators on W, including the properties of the system, is defined 

in more detail in definition 2.5 later in the present section. The state W E  Y is a property 
of the system. The physical meaning of this standard postulate is recalled in more 
detail in the remark to proposition 3.1(i). Let B(W) be the set of bounded operators 
on W, and let C be the complex number field. The state MY defines a linear functional 
( e ) :  B ( W ) n C :  ( A )  =Tr( W A )  for A E B(W) and W E  9, called the mean value of A in 
the state MV. Even if W is not separable, we do not consider more general mean value 
functionals (sometimes called ‘states’). 

Dejinition 2.2 (principle of objective causality). 
( a )  An evolution 8 is an ordered pair of states: woldn Wn,,, where Wold, 

( b )  A cause is a set of bounded linear operators on W 
Y. 

(c )  A transformation T is a positive map, defined by a cause %, creating evolutions 

( d )  The graph r( T )  of a transformation Tis  the set of all evolutions: W0,,n MY,,,, = 

( e )  Two transformations T, and T2 are equivalent when their graphs are identical: 
T (  Wold) which may be caused by its cause (e. 

7-11 = U TJ.  

Remarks 

takes time before it is completed. 
( a )  Any change of state of the object system is an evolution. Generally an evolution 
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( b )  The elements in % are operators of the object system itself and they represent 
the causes of its change of state; hence ‘objective causality’?. A displacement, for 
instance, may be caused by % = { U } ,  where U = exp(-iQp/ h ) .  The object system 
operator p, its property momentum, defines the qualitative nature of the transformation: 
displacement of the object. The parameter Q determines the quantitative amount of 
displacement and is a number which may refer to external systems (not parts of the 
object system); for instance, the meter sticks which define the (space) coordinates in 
terms of which Q is defined. Note that Q is not a property of the object system. The 
object system may have the property ‘position’, but Q is not it. The quantitative 
ingredients in the cause % can all be specified simultaneously. They represent those 
conditions which can be adequately described in terms of classical rational mechanics, 
classical electrodynamics and thermodynamics, say. 

( c )  For instance, if  % = {U} ,  where U is unitary: U+ = U-’, then Wn,, = U!@oldU+ 

is a unitary transformation. There are many other ways to change the state of a system, 
corresponding to transformations which are not unitary. 

( d )  The domain of T, and its range, are convex subsets of Y (dom( T )  consists of 
the states W E  Y whose images T (  M V )  belong to Y and ran( T )  consists of all the 
images, T (  M V ) ,  of W E  dom( T ) ) .  When the domain of T coincides with Y, dom( T )  = 9, 
then T is said to be conventional and its cause satisfies F =  Z j  E J 4  = U. Thus the 
conventional transformations admit any state in Y as initial state w o l d ,  while their 
ranges may, or may not, be restricted to subsets of Y. 
Theorem 2.3 (objective causality). Every evolution 8 : w o l d n  Wne, can be assigned at 
least one cause %, such that l”,,,,= T(b%’old). 

Boo$ Given in Larsen (1986a). Allows % to be a countable set: 9 2 Z. 

Remark. This result allows for an extension of the scope of quantum theory-an 
extension which implements objective causality as a principle. Traditionally the scope 
has been restricted to unitary transformations, amended with the so-called projection 
postulate in order to define the physical interpretation of the theory (cf 0 3). The 
objective causality formulated in (1) is a natural extension-physically as well as 
mathematically. 

Example 2.4 (operations). Suppose that one temporarily expands the objective of the 
quantum theoretical description, so as to include an external system (some apparatus, 
for instance) together with the object system. Let the initial state of this combined 
system be MV,b:“da” = MV old 0 x MV$Zp’, defined on the Hilbert space WOW‘app’. Let U(tota1) 
be a unitary operator for the system of object and apparatus. Then a unitary transforma- 
tion produces the evolution 

(total) -  total) (wold@ MV$:P))U(totaW 
w n e w  - 

t We use the concepts ‘object’, ‘objective’, ‘cause’ and ‘causality’ in the strict sense in which they were 
originally conceived. It is noteworthy that this is indeed possible in a contemporary operational context. 
We emphasise that some connotations which have become associated with these terms are not implied by 
the present terminology. Thus by ‘objectivity’ we mean no more, and no less, than what is expressed in the 
present text. ‘Causality’ means that every effect associated with the transformation of a system can be 
ascribed to a cause V; and that a specification of the operational content of V suffices to ‘explain’ the 
reasons for these effects (cf Larsen 1986a). In particular, ‘causality’ does nof imply ‘classical determinism’. 
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The standard procedure is then to reduce to the object space W, whereby 

W n e w  = 

is a state of the object. 
If we assume that Wnew is the final state, then Waldn  Wnew is an evolution for the 

object, known as an operation (Davies 1976, Kraus 1971, Lindblad 1976). It has been 
established that any operation can be represented in the form ( l ) ,  so that an operation 
is a transformation with an objective cause. The most recent proof (Larsen 1986a) 
also shows that any conventional transformation can be expressed as an operation. 

The formulation given above is not strictly objective, insofar as is not an operator 
pertaining to the object system exclusively. Also it is not strictly causal, insofar as the 
mathematical reduction by means of Trapp( e )  cannot be seen as a physical modification 
of the object system. However, there always exists an objectively causal transformation 
in terms of which one may 'explain what really happens to the object', regarded as an 
object physically operated upon. 

= exp( -iQ'aPP'Op/h), where t?(app) is some property 
of the apparatus, defined as an operator on W ( a p p )  and p is an object property. Let 
{ Ij)(app)} be an orthonormal basis in consisting of eigenvectors of Qp(app). 

Then ,@app)lj)(app) = Qj/j)(app), where {Qj} are the eigenvalues of Qp(app). Also, define 
Q = (app'(jl W$dPP)lj)(aPP), so that Xj tJ = Trapp( = 1. Forming Trapp( ) one then 
finds 

For example, consider 

where UJ = exp(-iQJp/h). The objective cause of this operation is therefore given by 
El = aJUJ, where laJ12 = 5,.  Such a transformation we call sub-unitary (Larsen 1986a). 
Both the weights {tJ}, and the displacements {QJ},  are determined externally by the 
nature and the state of the apparatus. 

In the same way one can concentrate attention on the apparatus, regarded in itself 
as another object. Let the eigenvalues of the momentum p be { p ,  I n E Ul}, defining the 
'latin' basis on W. The standard interpretation says that P ( n ) = ( n l W o l d l n )  is the 
predicted probability that the momentum attains the value p n  in the initial state Wold 

of the original object system. Thus one finds 

W ( a p p )  E T ~ (  My(tota1) ) = p ( n ) U ' , " P P ' M y $ z P ) U ' , " P P ) t  new new 
n 

where Uj(ndpp) = exp(-iQ'aPP'p,/ R ) .  The apparatus therefore also undergoes a sub- 
unitary transformation. Since the generator is the apparatus property Q(app),  the 
transformation caused by U/jlapp) might be called a 'boost' by an amount of momentum 
equal to p n .  The weights { P ( n ) }  and boosts { p , }  are again determined from the outside, 
this time by the nature and state of the original object. 

The interaction of the two systems, caused by this U(tota'), therefore tends to make 
them reciprocally record certain aspects of each other's initial states: the displacements 
are weighted by ( 5 , )  and the boosts by { P ( n ) } .  Whether or not these evolutions qualify 
as measurements is a question which needs further investigation. 

Both the object system and the apparatus system, on their own, end up in states 
Wn,, and WI;',P,p), respectively, with increased entropy (decreased purity (Larsen 
1986a)). does not change the entropy of the total system of object and apparatus, 
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so the apparent deficiency becomes invested in correlations which can only be detected 
if the two systems are regarded as a whole. 

DeJinition 2.5 (aspect and idea). Let 2, = {P, I P, = la)(al, CY E U,} be the complete set 
of orthonormal projectors corresponding to an arbitrary orthonormal basis {Ia)I la) E W, 
a E U,}, i.e. Papp = S,,P, for all a, p E U,t. 

( a )  Let d, denote the set of all compatible normal operators on W for which 2, 
provides simultaneous spectral decompositions: A = C, A,P,, for all A E d,, where 
sp(A) = { A ,  1 a E U,} is the spectrum of A. We call d, an aspect of the system$. 

( 6 )  The self-adjoint members of d, are referred to as properties, for which 
sp(A) 5 R. 

(c )  A subset 9 of properties in d, is called an idea; and when an idea is sufficiently 
rich that its spectrum may label the basis { la)}  it is referred to as a complete idea, 9, 
(i.e. a ‘complete set of commuting operators’) and 9, 9,s d,. 

( d )  The aspect d, includes at least one complete idea, namely zg, referred to as 
the (complete) logical idea of the aspect because its projectors represent the ideas of 
propositions in classical logic. 

Remark. In general the nature of a system includes aspects which are not compatible, 
i.e. whose elements do not all commute and do not all have spectral decompositions 
on a common logical idea. Such incompatible ideas define the potentiality of perform- 
ing incompatible operations on the system (implying complementarity). Thus, if d, 
and d, are incompatible aspects they contain at least one incompatible pair: B E d,, 
A E dl  (for which [B, A ]  # 0, assuming the commutator is well defined (cf Thirring 
1981)). The alternative aspect d, is defined by the logical idea 2, = {PH /P, = In)(nl, 
n E U,}, where {In)} is an alternative orthonormal basis in W, indicated by quantum 
numbers n E 0,. 

Example 2.6. The Pauli operators ox, 09’ and oz on a two-dimensional Hilbert space 
define properties of the ‘binary system’ (spin 4); They belong to incompatible land  
complementary) aspects. Each component ok = k 6, where 6 = (ox, oy, 0’) and k is a 
unit vector, defines an aspect of the binary systep and represents the (complete) idea 
of rotation about i. The logical idea in the k aspect consists of two orthogonal 
projectors: P- = ( U  - o k ) / 2  and P, = ( U +  o k ) / 2 ,  i.e. 2 = {P-, PT}. The set of all aspects 
of the binary system is isomorphic to the points on the unit hemisphere. Hence there 
are uncountably many incompatible aspects of even this, the simplest of all systems. 

3. Axioms 

Consider an arbitrary object state W, with respect to which the arbitrary aspect dl is 
to be measured. The following three criteria (i)-(iii) define the class of conventional 
transformations which serve as ‘complete measurements’ of this aspect. 

t Here S,, = 1 if (Y = b, and S,, = 0 otherwise. 
$ Technical details pertaining to these definitions are discussed in the appendix. 
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Proposition 3.1. Ju(d,) is the class of complete measurements of dl, provided for all 
T E A(dJ and all pure states (projectors) P, E 2, c dl : 

(i)  [Pn, T (  W)I = 0 (compatibility) 

(ii) T(Pn)=Pn (reproducibility) 

(iii) All T are equivalent (objectivity). 

Remarks 

T (  W) E d l .  This means that (necessarily?) 
(i) Compatibility. The measurement transformation T E A(dl )  creates a new state 

where { w,} = sp( w) are statistical weights in the situation after the measurement is 
performed. In general MY and w belong to different (incompatible) aspects, i.e. W E  dg 
and w E d,. The initial statistical weights { W,} = sp( W), corresponding to W = 
Z, W,P,, pertain to a situation, qualitatively defined by dg and quantitatively by 
{ W,}, which is not compatible with the one that is required in order for the measurement 
to be an empirical fact. 
The reason is this. As is well known (see von Neumann 1955, ch 5 )  a system can be 
separated (without interfering with its constitution) into subsystems in pure states, 
belonging to the logical idea of the aspect to which its state belongs, but only into 
these$. Thus the measurement enables us to render w empirically equivalent to an 
ensemble of subsystems in pure states P, E d,, with relative weights {w , } .  Here 
w, = N , / N ,  where N ,  is the number of specimens in the nth subsystem and N = 
e x ,  N,  = ‘total number of specimens in the original system’+. If A E d, is a property 
belonging to the measured aspect, the weights { w,}  represent the experimental statistic 
of its quantitative values, taken from {A,} = sp(A),  i.e. ‘data’. 

On the other hand, properties belonging to aspects incompatible with dl, for 
example B E d,, cannot simultaneously with A be assigned quantitative values. In 
particular, the original assignments, say values from { B , }  = sp(B) with weights {We}  
in the initial state W, are destroyed by the measurement transformation. Hence the 

t The statistical operators W E  Y are trace-class, and hence compact. Therefore their spectra, such as 
sp( W )  = { W,} and sp( w) = { w,,}, are discrete (countable), consist of eigenvalues and their only point of 
accumulation is 0. This is true whether or not W is separable (Hilbert-Riesz theorem (von Neumann 1955, 
Thirring 1981, Dunford and Schwartz 1963, Conway 1985)). Therefore it is always feasible to separate w, 
say, into a countable set of subsystems in orthogonal pure states (as required for reasons of physics). In 
particular, every member of Y can be diagonalised as in (2) (cf the appendix for further remarks). 
$ The decomposition of a given state W E  5’ into a convex cohbination of pure states (i.e. W =  E, &,P,) is 
not mathematically unique, unless the pure states are required to belong to a set of orthogonal projectors 
(belonging to an aspect) (Schrodinger 1936). It is well known that mixed states formed by the convex 
combination of non-orthogonal pure states cannot be separated without interfering with the system, such 
that when recombined the state becomes other than the original MY (namely one of higher entropy (von 
Neumann 1955)). Separation and reassembly is feasible if and only if the components are orthogonal, say 
pure subsystem states (i.e. W =  E, W,P,, where {Pe }  5 -YE are orthogonal). 
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measurement changes the concrete character of the system from one belonging to the 
‘greek’ aspect ds into one belonging to the ‘latin’ aspect dl which is measured?. 

(ii) Reproducibility. If the initial state is compatible with the measured aspect (i.e. 
.a!, = dI) the measurement must confirm it. It suffices to require that T reproduces 
any of the pure states W = P,. 

(iii) Objectivity. The result w will, of course, depend on the object state W. Apart 
from that, it must depend only on the measured aspect d1 in the way that is implied 
by (i) and  (ii). ‘Objectivity’ demands that a measurement mapping W +  w must 
depend in no other way on %’. If there are different ways to perform the measurement 
its result w must be independent of whatever distinguishes such equivalent transforma- 
tions. It must not depend on which apparatus is used, not even on differences between 
alternative procedures that may work with the same equipment. Otherwise w will not 
be a faithful ‘picture’ of W (the problem of ‘systematic errors’). If the experimenter 
knows how the external systems take part in determining the cause Fe he can still tell 
the difference between transformations, even though they are equivalent with respect 
to the states of the object (mathematically all  TEA(^^) have the same graph). 

The reason that these criteria can be regarded as axiomatic is that, in essence, they 
express the empirical distinction between alternatives in a classical logic, symbolised 
in the logical idea 4 of the aspect to be measured. This is the most elementary axiom 
of a rational empirical theory$. It makes no difference that this axiom is embedded 
in an operational context, which constitutes the ‘quantum postulate’. Remarkably, 
however, as will be shown in the following, measurements can thus be defined without 
assuming anything which is not already necessary to define the empirical concept of 
‘state’, i.e. the ‘statistical interpretation’ of the entity w, which relies on the classical 
logic of 9,. In proposition 3.1 nothing whatsoever is postulated regarding how the 
measurement transformation takes place. 

In contrast, when quantum theory is based on the traditional projection postulate 
a measurement is dejined as the particular transformation caused by Fe = 21 = {P,,}, 
the ‘logical cause’. According to this postulate the measurement is a definite transfor- 
mation 

w=CP,MvP, 
n 

(3) 

the effect of which is the projection of W. Even though there can be no doubt-and 
our results confirm this-that the projection postulate is empirically justified, it is 
virtually impossible to motivate it in an  axiomatically simple way. It has always rested 
entirely on its considerable merit. Rather, we shall view (3) as a statement of accom- 
pished fact: that a transformation has taken place, starting with W and resulting in 
w, a transformation which evidently agrees with the axiomatic critieria (i)-(iii). But 

t This is how the transformations in A(.d,)  produce the desired measurement result. In 5 5 we give examples 
of how to record data in an external apparatus (see also example 2.4). But it is well known how to do this 
by establishing correlations (von Neumann 1955, Herbut and VujiCiC 1976, Zurek 1982, Walls et al 1985). 
The decisive step is the transformation into the object state w, given by (2) (Wigner 1983). 
$ It is well known that rational theories can be based on non-classical logic. The emphasis is on ‘empirical’, 
on the axiom that actual fact (i.e. ‘physical reality’) does conform to classical logic. The probabilistic 
structure of quantum theory is not reducible to classical logic. But these probabilities are theoreticaIpredictions 
for which no such assumption seems axiomatic, as long as the predictions are not all supposed to apply to 
the same actual situation (cf 1 6 ) .  On the other hand, the states [My and w of quantum theory always 
represent what is actually the case, and therefore incorporate a statistic, { W e }  and { w , ~ } ,  respectively, based 
on the classical logic of their aspects. 
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(3) offers no  physical explanation of how it took place. As the cause % = 2, shows, 
the projection is a ‘logical’ rather than a ‘physical’ transformation. 

4. Central theorem 

Theorem 4.1. Let the transformation T E  A(&!,) be an  arbitrary complete measurement 
of the aspect si,, and let its cause % consist of operators El = a J q l ,  where llqJll = 1 
and  laJ12 = 6 = lE;El 1 1 .  Then we find the following. 

( a )  The cause belongs to the measured aspect: %? E SP, . 
( b )  The cause satisfies the measurement condition 

k vn k n  for k, n E U, (4) C t J . \ y ( J )  ( / I *  = a 
J 

where for all j :  s p ( q J )  = n E I,}. 
( c )  The measured statistic is 

w, = ( n /  Win) = P ( n )  ( 5 )  

where {P( n )  1 n E U,} must therefore be the predicted probabilities to be assigned theoreti- 
cally to the aspect SP, in the initial object state W. 

( d )  Every result is reproducible by a repeated measurement: 

T (  w) = w. (6) 

where all latin quantum numbers belong to 0,. The reproducibility criterion (ii) requires 
w, = a,, for W =  P,. and any n’E I,. Thus 

a k n a n n ’  = 1 b(k1q j  in’)(n’lqJln) (8) 
I 

and, in particular, for k = n :  

1 tjl(nIqjl’~ln’)l~= a n n  
J 

Since the terms in this sum are non-negative they must all vanish for n # n‘. Thus, for 
all n, n’E 0, : 

(nlqJln’)=.\y?)8, , .  ( 9 )  

This provides a spectral decomposition of each 9, on Z,, i.e. W, =E,, q‘jc’P,,, where 
I’P‘jc’Is llqJll = 1, and proves ( a ) .  From (7) then 

wnSkn = (kl W i n )  (l.\ykJJ.\yL/J*. 
/ 
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Since the measurements in A(&,) admit arbitrary W this akn must come from the 
second factor, which establishes ( b )  and ( c ) ? ,  and ( d )  follows immediately from ( c )  
or directly from proposition 3.l(ii) using (2) .  

Remarks 
( a )  The measurement provides the empirical basis for assigning quantitative values 

to the physical properties belonging to the measured aspect. It does this in a way 
which faithfully (i.e. conforming to the criterion (iii) of objectivity) reflects the initial 
object state. In order to achieve this actualisation of the chosen aspect one must 
perform a transformation, on the object system, caused by the very operators which 
represent the measured properties. Therefore the operators of quantum theory qualita- 
tively define the very operations which generate their own quantitative realisation. The 
principle of ‘objective causality’ thus provides a most explicit motivation for the 
‘quantum postulate’, according to which the properties of systems are operationally 
defined entities (definition 2.1). 

( b )  The cause Y2 of the measurement consists of a dejinite selection of operators 
from the measured aspect. The measurement transformation therefore consists of a 
dejinite concert of operations. Such experimental design (cf example 4.3) requires a 
careful tuning of the parameters in the elements of Y2, parameters which are determined 
by external systems (apparatus). Without such tuning one shall not achieve a (complete) 
measurement, but merely have performed some transformation on the system. Of 
course, transformations take place spontaneously all the time; but in order to have a 
measurement a deliberate design by an experimenter is (generally) necessary. 

On the other hand, the measurement condition (4) is not all that hard to satisfy. 
It is essentially a condition of orthonormality imposed on the quantities 9:), as 
enumerated by n, and with variable j and weight function tJ. This latitude in the 
design conditions is the reason that the measurement class A( a,) includes an infinity 
of equivalent transformations. The ‘projection’ (3), for example, has 9:) = a,,,, but 
there are many alternatives. 

(c )  This result establishes the empirical foundation of the quantum theoretic 
probability calculus. One does not have to postulate that P ( n )  = ( n l  Win), or even that 
P( n )  = I( n for a pure state W = I$)( $ 1 ,  is a probability and to support it empirically 
with the ‘projection postulate’. The theorem shows that any faithful ‘picture’ of the 
original object state MY, taking the empirical form of a reproducible actualisation of 
one of the aspects of the system, must necessarily produce a statistic { w,}  which agrees 
with a particular theoretical construction, namely the quantities {( n I Win)},  which must 
therefore be the predicted probabilities { P (  n ) } .  

Of course, on the basis of the state W the theorist is free to predict probabilities 
for every aspect of the system, even when the aspects are not compatible. However, 

t According to the classification of transformations/evolutions proposed in Larsen (1986a), all (complete) 
measurements T E  &(I,) are ‘conventional’, i.e. admit arbitrary initial object states (Tr( T(  W ) )  = 1 for all 
W E Y ) .  Under this assumption it turns out that ( i )  and ( i i )  alone imply that there is only one equivalence 
class A(&,) (definition 2.2(e)) and the outcome, w = T (  W ) ,  turns out not to depend on the cause V except 
to the extent that V secures that w belongs to the measured aspect d,. Our earlier proof (Larsen 1986b) 
did depend on ( i i i )  and the present theorem is also stronger in other respects. There are circumstances in 
which the objectivity ( i i i )  becomes relevant as an axiom. One is in incomplete measurements (cf a subsequent 
paper), where it turns out that there are several equivalence classes (because less is required of an incomplete 
measurement). Another would occur if one were to consider ‘unconventional’ transformations (Tr( W )  # 1 
for some W E  Y outside the domain of T ) .  However, to generalise in this way, although interesting, is 
beyond the scope of the present investigation. 
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in order to have the predictions experimentally tested, which means seeking evidence 
that the theoretically assumed MY is really the state of a given object system, a definite 
one of these aspects must be singled out for measurement. It is a free choice, but 
between mutually exclusive alternatives. In fact, part ( a )  of the theorem shows that 
measurements of incompatible aspects musr correspond to incompatible operations, 
because the causes of the transformations which constitute the measurements of 
incompatible aspects are themselves incompatible. 

On the principle of ‘objective causality’ the present theorem therefore tells us both 
how to perform measurements in practice and how to make theoretical predictions 
about their outcomes. It also tells us that there is no way in which incompatible aspects 
can be measured simultaneously. None of these fundamentals of quantum theory 
therefore have to be based on postulate, as they have been traditionally. 

( d )  The present theorem encompasses every transformation in which the quantita- 
tive actualisation of a physical aspect (by (i))  is reproducible (by (ii)). Objectivity 
(iii) is actually a corollaryt. 

Corollary 4.2. In the state MY the theoretically predicted mean (A) which agrees with 
the average A over the experimental statistic { w n } ,  produced in a (complete) measure- 
ment of the aspect d, to which a bounded A belongs, must be given by 

A = An w,, = Tr ( MVA ) = (A ) . (10) 
n 

ProoJ: By (5) 

A = A,, ( n 1 MVI n ) = c ( n I WA 1 n ) = Tr( MVA ) 
n n 

since the trace Tr( ) can be evaluated in any basis in W and WA belongs to the 
operator trace class when A E B(W) (Thirring 1981, Dunford and  Schwartz 1963). 

Remark. Let A = A , + A 2 ,  where A, A ,  and A, are bounded operators, possibly 
incompatible, i.e.belonging to different aspects. Then 

( A )  = (A ,)+ (A*). ( 1 1 )  

This result, the linearity of the quantum theoretic mean-value functional, is also a 
matter related to the interpretation of the theory and  is postulated in the traditional 
version (von Neumann 1955). It could be a source of concern, representing a con- 
sequence of the ‘projection postulate’ which cannot be directly tested because the three 
mean values refer to mutually exclusive experimental situations, i.e. require measure- 
ments of incompatible aspects. The corollary shows that no measurements, by ‘projec- 
tions’ or  otherwise, allow a violation of (1  1). 

Example 4.3. Let A E d, be the property defined by sp (A)  = {A,, 1 A,, = a,+ an, n E 0,) 
and let it be the generator of the set {V,} of unitary operators 

‘P, = exp( -iQ,A/fi) (12) 

‘r See footnote on previous page. 
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where { Q,} are parameters designed by the experimenter and determined by means of 
external apparatus systems. Their spectra are given by 9;’ = exp[-iQj(ao+ a n ) / h ] .  
According to the measurement condition (4) the experimenter must therefore design 
the sets {e,} and {Q,} to satisfy 

Let W be a finite space, dim(W) = g and 0, = (0, 1, . . . , g - l}. Then (13) is satisfied with 
a set of G operators {V,} if, for instance, for j = 0,1,  . . . , G - 1: 

6, = 1 / G  and Oj = QO +jQ (14) 

Q = h / a G  (15) 

provided 

and with arbitrary a,, Q,, and for any G 2 g. Even within this rather special design 
there is an infinity of causally distinct experimental options. On the other hand, the 
measurement conditions (14) and (15) are quite specific. 

In the binary system, g = 2, the aspect corresponding to the space direction k  ̂ can 
be measured by means of a set of rotations about k ,̂ whose unitary operators are 
generated by the spin A = hark/2, with a = h. The present design consists in an even 
selection of G 2 angles {Q,} evenly spaced around the equatorial unit circle: Q = 
277/G. Both the number G and the overall orientation angle Qo are arbitrary. 

5. Discussion: the binary system (spin $) as object 

The measurements caused by ‘sub-unitary’ transformations, as in example 4.3, involve 
a set { W,} of subsystem states 

w, = PjWP,T. (16) 

None of these, however, are individually compatible with the aspect d, to be measured. 
To achieve the actualisation of d,, according to the compatibility criterion (i), it is 
necessary to establish the convex combination (i.e. C j  6 = 1) 

Indeed, theorem 4.1 encompasses every conceivable way to accomplish this; hence the 
necessity of designing some appropriate convex combination according to the measure- 
ment condition (4). Even if the subsystems may happen to be distinguishable, their 
states { W,} are by no means representative polls of the state w of the total system 
and they belong to aspects which are generally not compatible, neither with dl nor 
with each other. 

As the present new measurement transformations have ‘physical causes’, it is clear 
that they can be regular physical processes and take time to carry through. 

( a )  In the binary system it is particularly clear what happens during the measure- 
ment. The states of the binary system are uniquely defined by the polarisations 
W =  {(I + = Tr( W6) belongs to the unit ball in space, with the pure 
quantum states on its surface. After the measurement w = ;(Ut - 6), where j3 = Tr( w6). 

6), where 
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A unitary transformation rotates the polarisation in space: Wj = ;(U + e 6), where e 
is the rotated version of P which corresponds to Vj. Thus 

When the k  ̂ aspect has been measured it turns out that p’ is the geometric projection: p’ = 
( k ^ .  $)k^.  Evidently this purely geometric operation corresponds to the logical cause 
inherent in the projection postulate?. 

A concert of rotations, such as defined in example 4.3, corresponds to a physical 
cause. The components of {e} transverse to k  ̂ form a regular G-gon in the equatorial 
plane to k^. Hence p’ has no transverse component and the longitudinal component is 
again k ^ .  P. In the limit G +  CO one obtains the familiar Stern-Gerlach method, in 
which the measurement of spin is caused by an inhomogeneous external magnetic field 
designed by the experimenter so that its effect is the required concert of rotations 
(further details are given below). 

In fact, any polygon, regular or not, formed of rotated and weighted replicas of P, 
i.e. the transverse coAmponents of the vectors {tje}, represents a causally distinct 
measurement of the k aspect. The measurement condition requires that, in any such 
design, the transverse components close up to form a polygon. The class of equivalent 
measurement transformations is therefore uncountably infinite for any k  ̂ aspect. Every 
one of its elements can handle an arbitrary initial object polarisation, whether it be 
known in advance of the measurement or not. We have thus established the following 
corollary to theorem 4.1. 

Corollary 5.1. The class A(&), which defines the complete measurement of an arbitrary 
aspect &, in general contains an uncountable infinity of causally distinct but equivalent 
transformations. 

Proo$ By demonstration, as in the example discussed above. 

( b )  Suppose we employ a second spin-; system as apparatus, after the fashion of 
example 2.4 in P 2. Quite remarkably, one finds that such an operation can both perform 
the measurement on the object and record the result in the apparatus. 

Let u ( t o t a l )  - - exp(-iW(total)t/ h ) ,  where t is the time elapsed since the beginning of 
the measurement and W(tota’) = J Q ~ ( ~ ~ ~ ) O  Q~ is a Hamiltonian designed to measure the 
k  ̂ aspect of the object spin ( J  is some coupling constant of dimension energy). Since 

t It is a somewhat peculiar feature of quantum theory-although not particularly a consequence of the 
present formulation of measurements-that the unpolarised state w = f Q  (i.e. $ = a )  may be the result of 
measuring different aspects. The reason is that such a state as this belongs to different (incompatible) aspects 
( U  commutes with all operators). For instance, if one measures o’ or 0’ in a state W=i(U+ P X o x ) ,  which 
has polarisation in the x direction, then w =$I confirms the prediction that both U ’  = *l and U’ = *l are 
equally probable in the state W, Of course, this is what it means to say that W has no polarisation transverse 
to the x direction. The completely mixed state w =$I is the state that is furthest away from all the pure 
states; in 3-space P = d  is the centre of the unit ball. Such a state w =  (l/g)U exists in all finite spaces 
dim(W) = g, is unique, and is equidistant from all pure states in the metric defined by the supremum norm 
I / .  11.  Proof: Let A=P,-(l/g)U, where Pa is any pure state, with sp(A)={l-l /g,-l /g}={A,}. Then 
11AlI/= -(l/g)Ull=sup,lA,I= 1- l /g=dis t (P, , ( l /g)U) independently of P,. No state is further away 
from all the pure states, since for M y +  (l/g)U one can always find a P, which is closer than 1 - l /g .  For 
instance, take P, from the logical idea that defines the aspect of such a MY, with a corresponding to the 
largest eigenvalue W,. Then the distance is 1 - W, < 1 - l / g  since max,( W,) > l /g .  
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this case corresponds to G = 2 the measurement may first be accomplished at the time 
t = &/4J  (and periodically thereafter, period = .rrh/2J) when 4 = e x p ( - i J t j ~ ~ / h )  
has rotated the object through either of the angles *7r/2. Here J is taken to consist 
of the spectral values j = az(app) = rfr 1 for the component 02(app) of the apparatus spin 
6(app) along an arbitrary direction which is taken to be the z axis. 

The initial apparatus state is MVzdpp) =;(I + p(app) 6(app)). So in order to fulfil the 
design criteria one must arrange to have (app)( j (  MYzdpP)lj)(aPP) = &, = for j = *l. There 
is little design latitude with such a small apparatus, except that the choice of the 
direction called the z axis is arbitrary. This requires that I?(app) is in the xy plane and 
one can let it define the x axis: P(app) = (P(app), 0, 0), where IP(app)l S 1 is the initial 
apparatus polarisation. 

When calibrated in this way the apparatus performs the measurement as described 
above. To see the recording, reduce to the apparatus space If n = uk = *l, 
then the predicted probabilities are P ( n )  =$[l+ n ( L .  p)], where I‘ is the initial object 
polarisation (and w, = P ( n )  is the statistic obtained). The final object polarisation is 
in the Ljirection and is ( L e  p) = P cos ekP,  where P = and ekP is the angle between 
f i  and k. 

The apparatus polarisation also gets rotated through either of the angles r f r ~ / 2 ,  
but about the z axis. These two mixing alternatives are weighted as P( n = *l). The 
final apparatus polarisation then becomes directed along the y axis: 

The factor ( L e  I‘) therefore records the projection of the initial object polarisation 
along the k* direction, which is indeed the result of the measurement. 

Note that both object and apparatus polarisations end up smaller than they were 
initially. This means that-on their own-both object and apparatus emerge in less 
pure states (the spin-$ purity is $( 1 + P 2 ) ) ,  but have become correlated. 

It is somewhat surprising to discover how much can be achieved by such simple 
devices. By design the y aspect of the apparatus spin acts as a binary register: separate 
u ~ ( a ~ ~ )  = *l and counting reveals what ( L s A P )  is (since p(app) is known). One could, 
of course, also separate according to the k aspect of the object spin and obtain the 
same information. There is no ‘macroscopic’ component of the present apparatus, 
although there i s  irreversibility-insofar as it might not be feasible to count in these 
reduced modes and to fully retrieve the object-apparatus correlation at the same time. 
The latter would require us to measure another aspect of the combined object and 
apparatus system than that to which O y ( a p p ) O O k  belongs, namely that aspect to which 
its final state MV:;:’) belongst. 

It therefore appears that a macroscopic device would only be required if one wanted 
to fix the outcome of the measurement into a time-independent state by some kind of 
irreversible relaxation in the course of time (Zurek 1982, Walls et al 1985). In the 
present design one is obliged to either turn off the object-apparatus interaction W(tota’) 
at a precise instant, or to catch the spins precisely at the recurring instants when the 
measurement criterion is periodically satisfied. However, if one can do that, then the 

t This is not feasible, for the following reason. Which aspect W:$’) belongs to depends on the initial state 
Wold of the object, among other things. The experimenter would therefore have to know the result of the 
measurement beforehand (in fact, he would have to know more, namely all of But, of course, the 
point of measuring is (primarily) to aquire information about the object which is not already available. 
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collection of apparatus spins, say, would seem to constitute as permanent a record as 
one could wish. 

(c) We conclude by discussing an example which demonstrates how a coupling 
of the spin-! object to a 'large' environment causes the object to tend to permanently 
maintain the measurement result in the course of time, with increasing accuracy the 
'larger' the environment is. 

For instance, one may use a spin S as apparatus, in a manner similar to the way 
in which a spin was employed in the previous example. This too produces an objective 
situation like the one investigated in example 4.3 of 9 4, with G = 2 s  + 1, provided we 
let Q(app) be some component of such a spin, say Sz(app), whose spectrum is equidistant 
{ - S ,  . . . , S } .  Alternatively, one may apply an arrangement of G static external magnetic 
fields {e}, all along the k* direction, objectively producing the same transformation 
(by the Hamiltonians WJ = -ill,&). 

Think of the plane transverse to the k* direction as the complex plane. As before, 
the component of IS  along k* is unaffected. Starting at t = 0 with a transverse component 
P'(O), one has, at time t, performed a concert of rotations giving 

G-1 

P'( t )  = tJ exp(-iw,t)P'(O) 
J = o  

where P' is the transverse part of P represented as a complex number. A 'harmonious' 
concert of rotations is achieved ifthe rotation angles {wJt }  are obtained from frequencies 
of the form wJ = w j +  U,,. The criterion for having a measurement of the k* aspect is 
therefore 

G-1 

C tJ exp( -iwjt) = 0 
J = o  

whereby the transverse component of? is brought to vanish and the resulting polarisa- 
tion is the geometric projection 13 = k(k*. I S ) .  

First, let 5, = 1/ G and wo = 0. Then 

W O )  1 1 - exp( -iGwt) 1 G-1 

G j = o  G 1 - exp( -iwt) 
P'( t )  =- C [exp(-iwt)]j~'(o) =- 

and the length is 

It is zero and the measurement condition is fulfilled at times t ,  = u27r/Gw; U are 
integers not divisible by G. At time tG = 2 7 r / w  there is a PoincarC recurrence: P'( t G )  = 
P'(0). This evolution in time is illustrated in figure l (a ) .  

Not only is the measurement condition satisfied repeatedly at instants that are 
closer in time the larger G is, but for a period of time, in between the start of the 
measurement and the recurrence, the object polarisation stays fairly close to the origin: 
(P'(t)l = O .  There are two foci: the point of measurement at the origin and P'(t,) = 
(l/G)P'(O), attained at time tp = p 2 7 r / ( G - l ) ~ ;  p are integers not divisible by 
(G  - 1). Throughout most of this intermediate period /P'(t) l= (l/G)lP'(O)l, where it 
can thus be said that the measurement is approximately achieved, with a relative error 
of the order of 1 / G  which can be made small by design. In return for accepting such 
inaccuracy, the measurement becomes approximately permanent after a time of relaxa- 
tion of the order of 25rlGo. 
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Figure 1. Motion, in the course of time, of the polarisation during a measurement on a 
spin-f binary system. Showy is the track of the transverse polarisation vector in the plane 
perpendicular to the space k direction defining the aspect that is being measured, i.e. P l ( t )  
as defined in 0 5 when oA is measured using a cause with G = 10 components. The 
measurement is complete at instances when the track crfsses the origin (0,O) and the 
polarisation has thereky been made to coincide with the k direction, its length being the 
geometric projection k .  P ( 0 ) .  Scales are in units of initial transverse polarisation Pl(0), 
starting at (1,O).  ( a )  Harmonious design ( w  = l ) ,  giving a periodic track with repeated 
crossings of (0,O) and recurrence to the initial state P' = (1,O).  ( b )  A design with a slight 
disharmony (Sw,=O.12, -0.07, 0.21, -0.15, -0.16, 0.10, 0.15, -0.13, 0.02, -0.09) causes 
the motion to become almost-periodic. The track cannot be counted on crossing the origin 
in finite time, but nevertheless stays essentially as close during the intermediate stage as it 
does in the perfectly harmonious design. With large G this would suffice for an approxi- 
mately complete measurement, whose outcome remains essentially fixed at (0,O) for a 
length of time. 

For instance, in the Stern-Gerlach method one lets G + CO and w + 0, keeping 
1/ r = w G  finite. Thereby 

and the PoincarC recurrence is put off into the infinite future. 
The periodic recurrence (G < CO) is notable. Shortly before it occurs, the purity of 

the state of the object starts to increase significantly and the state becomes as pure as 
it was to begin with (the object entropy decreases to its original value-but not below 
it, of course). So such a measurement transformation eventually unwinds itself. 

Second, a slight 'disharmony', in the form of non-equidistant wj = w j +  Sw,, does 
not cause a drastic deterioration in the accuracy of the approximate measurement. As 
seen in figure 1( b) ,  a set { 8 w j }  of random disharmonies (here /8w,l= 10% of w )  causes 
the evolution to become almost-periodic. An almost-recurrence still occurs at t = 2 5 ~ / w ,  
but the closer a recurrence one attends, the longer it takes before it happens. Apart 
from this, P'(t )  still remains reasonably close to the origin at intermediate times, as 



4528 U Larsen 

it did in the harmonious design. However, the object polarisation ‘never’ actually 
crosses P l  = 0, so, strictly speaking, the measurement criterion is not fulfilled in this 
designt. Nevertheless, it may come closer to a practical and feasible situation for a 
macroscopic apparatus; in which case one could imagine that Q(app) was a ‘random 
property’ of the apparatus (i.e. an operator whose matrix is a member of a random- 
matrix ensemble for which the level spacing in the spectrum of eigenvalues has a most 
probable value (Brody et al 1981)). On the other hand, one cannot tolerate much 
laxity in the k  ̂ directionality if the k  ̂ aspect is to be measured sucessfully. 

6. The probabilistic/statistical interpretation 

The extension of the scope of quantum theory provided by objective causality helps 
to clarify a number of fundamental issues. We have already remarked upon the 
operational nature of properties, in connection with theorem 4 . l ( a ) .  Let us not forego 
the opportunity to provide some further comments on the implications of (c )  of that 
theorem. 

Suppose that the initial object state is pure: W =  P, = /$)($I. It therefore corre- 
sponds to a state in which the $th item of the ‘greek’ aspect d, is certain. The properties 
in dg have definite quantitative values and these values can be confirmed by means 
of a reproducing measurement T E Jtl (9pg) .  

Despite this perfect certainty, which extends to every individual specimen (because 
the state is pure), the predictions concerning diferent aspects, say the ‘latin’ aspect 
d l ,  are probabilistic. We predict P(n)=(nlWln)=l(n l$) I ’  for the nth item of dl .  If 
P (  n )  < 1 ,  which is generally the case, there is uncertainty (at least on the part of the 
theorist who makes the prediction) about the assignment of quantitative values to the 
properties in 4.  What is the physical significance of this uncertainty? 

Perhaps the easiest response would be to say that the uncertainty represents an 
irreducible element of physical Nature. Then it needs no explanation. The uncertainty 
would be an intrinsic feature of every individual specimen. 

Another response is suggested (but not implied) by the projection postulate. When 
d, is measured, in an ensemble of specimens forming a system, the nth item in d, 
occurs with frequency w, and it is postulated that w, = P( n ) ,  the predicted probability. 
It might then be imagined that a definite value, A,,, of the property A E d, was attributed 
to each specimen, and was already present when the object is in the state P,. Then 
P ( n )  would represent the distribution of values { A , }  between the specimens of the 
system and the measurement by projection would detect it by some sort of filtering 
attuned to the aspect d,. This viewpoint attempts to maintain classical realism and 
has been shown to lead to predictions (Bell inequalities) which both contradict standard 
quantum theory, and which do not agree with experiments designed to test them. 

It thus appears that, while the probabilities { P (  n)} surely represent an objective 
feature associated with the object system (because they are defined exclusively in terms 
pertaining to the object), if they belong to individual specimens they cannot easily be 
given a statistical interpretation. This might lead one to believe that we need two kinds 
of probabilistic/statistical concepts in physics: the intrinsic uncertainty associated with 
the probabilistic interpretation of the quantities { P ( n ) }  in quantal systems and the 
t An almost-periodic function, such as the exponential polynomial we are contemplating here, may-or 
may not-have zeros. To be more rigorous about this is beyond the scope of the present paper. Let it just 
be said that, due to the truncation in the decimal representation of the Sw,, there is a sense in which one 
can assert that i t  is most likely that this polynomial does not have zeros. 
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conventional statistical dispersion associated with classical random variables. If this 
is the case, then it requires a postulate, the projection postulate, to state that there is 
a process called ‘measurement’ which renders { P (  a ) }  observable as statistical frequen- 
cies { w,,}. 

However, while the second of the responses above is too extremely statistical, one 
could say that the first response is too extremely probabilistic. We shall show that 
objective causality supplies a middle ground in which the two viewpoints can be 
reconciled, and even unified. 

Historically the probability/statistics dichotomy was compounded in the way mixed 
states were originally defined. Namely, let { I I , ! I l ) }  denote a set of pure quantum states 
pertaining to an ensemble of subsystems, wherein each subsystem state Pj = /I,!I,)(ILJI 
occurs with weight (Xj 5 j  = 1). Then the mixed state of the system is 

and the probabilities predicted for the aspect d, are 

P ( n ) = C  t j P , ( n )  ~ , ( n )  = (nlPjln)= l(nI~,!~j)l** 
j 

This expression would not contradict a different status to the quantal (conditional) 
probabilities {P,( n ) }  and the classical frequencies (8,). 

But neither does it make the distinction compelling. Every operator W E  SP belongs 
to an aspect, say d,, so W can equally well be written in the form? 

where {We}  are at the same time quantal probabilities ( P ( a )  = ( a /  Wla) = W,) and 
statistical frequencies for the outcome of a reproductive measurement of d, itself 
W = I;, POL WP,. On the other hand, there is no comparable way to extract the weights 
{$} from a given W, since the decomposition is not unique unless it is into orthonormal 
projectors, which {P,} are, but {PI} are not. 

For this reason the most prudent attitude is to maintain that the physical reality 
to be associated with the object in a state W resides exclusively in the aspect d, defined 
by Zg= {POL} and the statistical weights { W,}. This is the viewpoint adopted in the 
present work. It requires nothing but the classical logic of d, and the classical statistics 
of { W,}, whether the state is pure (We = 1 for a = $I, W, = 0 for LY # 4 )  or not. So far 
there is no conceptual discrepancy between the quantal probabilities { P ( a ) }  and the 
statistical weights { W,}. Neither is there any discrepancy after the measurement, since 
the new state w = X,, w,,P,, can be interpreted along the same lines. 

It remains. to explain the physical meaning to be associated with the probabilities 
{ P ( n ) }  which are predicted before the measurement, in particular the question of the 
uncertainty which they entail in a pre-measurement state in which, it is now claimed, 
the objective reality of the state P, involves only classically certain and verifiable 
propositions. 

Objective causality offers the following explanation. In order to actualise the aspect 
d, to be measured, the object system has to be transformed physically. How this is 
to be done cannot be seen in the projection postulate. But with the scope extended 

t See first footnote on page 4518 of this paper. 
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to the entire equivalence class of (physical) transformations which accomplish the 
measurement it is evident that the physical reality associated with { P (  n ) }  involves not 
only the object in its initial state Ph, but the surroundings that eventually cause the 
transformation as well. 

Thus, to interpret the predicted probabilities { P(  n ) }  one needs to take into account 
the whole situation in which the system may eventually find itself during the measure- 
ment of the aspect d, for which the prediction is being made. Whereas the object in 
itself is in a state P* whose reality is definite, those external influences introduce the 
element of uncertainty to be found in { P ( n ) } .  Indeed, we have shown that every 
measurement with physical cause involves a range of different subsystem transforma- 
tions (say w = 1, tJy ; = U,WUJ). Thus it is necessary to treat different specimens 
differently, although they all start out in identical states P@ in order to achieve the 
actualisation of the new aspect d, (assuming d,#d,) .  We can understand the 
uncertainty of the predictions { P (  n ) }  as uncertainty about how each individual speci- 
men is subsequently going to be influenced during the physical operations of the 
measurement process-and not as any intrinsic uncertainty in the reality of the initial 
state Po of the object. 

It is gratifying (indeed it is necessary) that every conceivable measurement transfor- 
mation in A(&,) produces the same statistic: w, = P ( n ) .  This leaves no doubt as to 
how the uncertainty must be defined in terms of the initial state P$ and the aspect d, 
which it is proposed to measure. It also shows that the predictions have to be 
probabilistic. 

The uncertainty inherent in { P ( n ) }  pertains to a well defined hypothetical future 
situation in which the object possibly may find itself situated. Therefore the entire 
range of different (incompatible) aspects can be predicted. But these are experimental 
options: a choice has to be made by the investigator as to which aspect is actually 
going to be measured. Then, and only then, does the uncertainty enter into the realm 
of physical reality and become the statistical dispersion observed in the statistic {w,,}. 

It is therefore quite appropriate, after all, to use the term ‘uncertainty’, since the 
predictor may be uncertain as to the course of hypothetical future events. But this 
need not imply any uncertainty as to the physical reality of the actual initial state P,t. 

In fact, this uncertainty about the causes that influence the individual specimen 
seems necessary-it is a precondition for the measurement to work. Without getting 
in too deep at this point, let it be said by way of illustration that, in the measurement 
of spin by the Stern-Gerlach method (cf § 5 and the last paragraphs of the appendix) 
it is necessary, in order to achieve beam separation, that the incoming beam has a 
certain non-zero width, so that the individual specimens become situated in different 
magnetic fields (hence the inhomogeneity of the field in that method). This corresponds 
to the necessity of forming the convex combination Z, tJWJ (traditionally ‘an irreversible 
act of amplification’) in order to obtain a state which is compatible with the measured 
aspect. 

In this way it seems that the extended scope of objective causality allows us to 
unify the probabilistic and statistical viewpoints. The uncertainty in the predictions 

t Of course, if the initial state P* arises more or less spontaneously its aspect may be so intricate as to be 
beyond practical confirmation. The experimenter may lack the means to perform any of the measurement 
transformations in ..M(d,). This, however, is not a matter of principle. As we emphasised, it is always so 
that there is a physical reality associated with dg, whether or not it is practically accessible to measurement. 
The virtue of such aspects as d, is that they can be chosen simple enough for the transformations in A(&,) 
to be within practical reach, by design, beforehand, and independently of P*. 
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{ P ( n ) }  concerns not only the object system itself, but the entire situation in which it 
may become situated. The uncertainty need not be interpreted as inherent to each 
specimen, but rather provides a preview of events that may take place in the course 
of a future measurement. Every uncertain prediction { P ( n ) }  agrees with a possible 
future dispersed statistic { w,}, w, = P( n ) ,  and this suffices for a satisfactory physical 
foundation of the probability calculus of quantum theory. We have shown that the 
agreement is a theorem, and need not be based on postulate. 

Appendix. Some technical remarks 

Let (1n)ln E 0} be an orthonormal basis in W. Then 2’ = {P, In E 0) is a complete logical 
idea, where the projectors are orthogonal: P,P,.= S,,P,, with S,,,= 1 if n = n’, and 
0 if n f n’. It is easiest to assume that W is separable ( 0  is countable) and, for simplicity, 
our notation is adapted to this case. However, this restriction is not necessary. 

P, = 1 a decomposition of the unity 
operator such that, for every I $ )  E W ,  C {PHI$);  n E 0} = I$), where Z { , n E 0} means 
(unconditional) convergence (in the norm I/ /I on W )  of the net defined by the directed 
set of finite subsets of 0 (ordered by inclusion) (Dunford and Schwartz 1963, Conway 
1985). This decomposition is sometimes written as en$,, = U .  It can be generalised 
to projectors on any decomposition of W into orthogonal subspaces: W = 0, W,, where 
W N  = PNW (0, PN = 1) are not necessarily one dimensional. We shall use this in the 
discussion of incomplete measurements in a subsequent paper. 

Recall that, for a given I $ ) E W , X  {Pnl$);  ~EO}=Z:=:=, (n l$) ln)=l$) ,  where { In)  
n E N} is a countable orthonormal set (and a subset of a basis). But if W is not separable 
this orthonormal set need not be the same subset of a given basis for different I$). 

Similarly, by A = E ,  A,$,, if W is not separable, one must understand A = 
Z {A,$, ; n E U }  = Q,A,P,, where the spectrum of A consists of eigenvalues: sp(A) = 
{A,, I n E U}. Thus, by definition, when A belongs to an aspect it is diagonalisable in 
terms of the corresponding complete logical idea 2. 

We have chosen to define aspects (and ideas) in terms of simultaneous diagonalisa- 
tion, rather than simultaneous spectral decomposition. Thus, for given 2: 

To generalise, one must understand by 

d = {A 1 A =e, A,P, ; P, E 2; A, E @; n E U }  

is the aspect based on 2, and every subset 4 5 d is an idea. 2’ is an idea, the complete 
logical idea of d. 

Every compact normal (AA’  = A 7 A  for A E a(W)) operator belongs to (at least) 
one aspect because it is diagonalisable (von Neumann 1955, Dunford and Schwartz 
1963, Conway 1985). In particular, every member of Y is compact and self-adjoint 
(hence normal). Therefore any state MV belongs to an aspect. 

Some normal operators may not belong to any aspect but may be compatible with 
one (or several). The reason for allowing this is that, since every state belongs to an 
aspect, any measurement result must have the form w = T (  M V )  = E, w,P,. This means 
that the resulting statistic { w,} can only assign definite quantitative values to properties 
whose (eigen)values can be indicated unambiguously in terms of n E 0, i.e. properties 
which are members of the same aspect as w. It would be a consistent terminology to 
call such operators ‘observables’. 
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Operators outside aspects would require ‘coarse graining’ in order to become 
observable. Since the discussion of this is the subject of a subsequent paper, we restrict 
the present remarks to an example which demonstrates the point. 

Assume that W is separable. Let R be a finite interval of R, the real numbers. Then 
there is a bounded normal operator (‘position’, say): q= jn q dE(q), where E is the 
spectral measure on R. In the usual way, if {Iq)lq E 0) defines the position representa- 
tion, then q=Indqq lq ) (q ) ,  with ( q ) q ’ ) = a ( q - q ’ )  and Tr (A)= jndq  (qlAlq), for 
A E 93, (the trace-class operators on W ) .  Let {R, I NEN} be a partition of R. Then 
E(i2,) = PN is the orthogonal projector on a subspace of W: PwVH =WN, W =eh, WN, 
and E, P, =U. 

Let qN € a N ,  define GEE, qwPN and let dq, be the extent of R, (i.e. dq, = 
 SUP^,^ En, ( q  - 9’)). Then 4 is a coarse graining of q, with resolution {dq,}. 4 belongs 
to an aspect, namely any aspect sd for which PN = E,,e9, Pn for all N, where B = 

{&, E O ,  NEN} is a partition of U. Therefore 4 is observable in a (complete) 
measurement of d. Furthermore, 114-qIl < E ,  where E = sup,(dq,) (Dunford and 
Schwartz 1963). In this sense we can find an observable 4 which can be made arbitrarily 
close to q by fine graining (&+O). If P ( q ) = ( q l W l q )  is the probability density over 
i2 for q, then the result of the measurement, the statistic {wn}, gives 

6, = c wn = Tr( WPN) = I, dq (41 W ~ N ) l d  = J- dq (SI Wlq) 

= I,,, dqP(q) .  

n € C v  Rh 

Thus one can say that a measurement of d produces a coarse-grained statistic {G,}, 
according to which 4 can be assigned values { q N }  with resolution {dqN}. However, 
inside each interval R, the choice of qN is arbitrary and so one cannot claim to have 
assigned to q a dejinite value from its spectrum. But the resolution of q provided by 
the observable 4 can be made arbitrarily sharp. 

Operators which do not belong to any aspect may still serve as causes of transforma- 
tions. For instance, if q is position it may generate momentum ‘boosts’: U = exp(iPq/ h )  
is the cause of a unitary transformation which translates the object through P in 
momentum. 

In a wider context, the operator Q(dpp) in example 2.4 may have a continuous 
spectrum, so that the operation T (  W )  = El S,U,WUj means 

T ( W ) = [  dQS(Q)U(Q)WuQ)-  

where 

U(Q)  = exp(-iQp/h) = (app)(Q/exp(-iQ(aPPi 0 p /  fl ) 10) 
and e( Q) = (app)(  Q I MYz$P)IQ)(app) is the initial probability density for the apparatus 
to supply the parameter Q. Since Q(app) is not to be measured there is no reason to 
restrict the attention to an observable version. For this reason we do not restrict 
definition 2.2( b )  to countable causes. 

For instance, in the Stern-Gerlach method (cf § 5(c) )  one can use the position of 
the particles transverse to the beam direction to record the spin-measurement result. 
Then, if ( Q / + )  is the wavefunction in the initial state W$dpP)= I+)(+(, the initial 
probability density across the aperture (the beam profile) is 

/ (  Q / * ) 1 2  &( Q )  = ( a m ) (  Q /  (MV(dpp)lQ)(app) = 
old 
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and by field inhomogeneity Q determines the field the particle experiences. We thus 
have the G + 03 case due to the continuous position spectrum. The initial (transverse) 
position is not measured to better resolution than to establish the beam aperture. In 
fact, to measure the transverse position Q(app) at the entrance would prevent its use 
as a recording device. It would prevent beam separation by the indeterminacy in the 
transverse momentum which is the consequence of such a measurement. 
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